Mapping polaronic states and lithiation gradients in individual V2O5 nanowires
نویسندگان
چکیده
The rapid insertion and extraction of Li ions from a cathode material is imperative for the functioning of a Li-ion battery. In many cathode materials such as LiCoO2, lithiation proceeds through solid-solution formation, whereas in other materials such as LiFePO4 lithiation/delithiation is accompanied by a phase transition between Li-rich and Li-poor phases. We demonstrate using scanning transmission X-ray microscopy (STXM) that in individual nanowires of layered V2O5, lithiation gradients observed on Li-ion intercalation arise from electron localization and local structural polarization. Electrons localized on the V2O5 framework couple to local structural distortions, giving rise to small polarons that serves as a bottleneck for further Li-ion insertion. The stabilization of this polaron impedes equilibration of charge density across the nanowire and gives rise to distinctive domains. The enhancement in charge/discharge rates for this material on nanostructuring can be attributed to circumventing challenges with charge transport from polaron formation.
منابع مشابه
In situ SEM study of lithium intercalation in individual V2O5 nanowires.
Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool th...
متن کاملProbing Stress States in Silicon Nanowires During Electrochemical Lithiation Using In Situ Synchrotron X-Ray Microdiffraction
Citation: Ali I, Tippabhotla SK, Radchenko I, Al-Obeidi A, Stan CV, Tamura N and Budiman AS (2018) Probing Stress States in Silicon Nanowires During Electrochemical Lithiation Using In Situ Synchrotron X-Ray Microdiffraction. Front. Energy Res. 6:19. doi: 10.3389/fenrg.2018.00019 Probing stress states in silicon nanowires During electrochemical lithiation Using In Situ synchrotron X-ray Microdi...
متن کاملPolaronic transport and current blockades in epitaxial silicide nanowires and nanowire arrays.
Crystalline micrometer-long YSi2 nanowires with cross sections as small as 1 × 0.5 nm(2) can be grown on the Si(001) surface. Their extreme aspect ratios make electron conduction within these nanowires almost ideally one-dimensional, while their compatibility with the silicon platform suggests application as metallic interconnect in Si-based nanoelectronic devices. Here we combine bottom-up epi...
متن کاملSelf-limiting lithiation in silicon nanowires.
The rates of charging and discharging in lithium-ion batteries (LIBs) are critically controlled by the kinetics of Li insertion and extraction in solid-state electrodes. Silicon is being intensively studied as a high-capacity anode material for LIBs. However, the kinetics of Li reaction and diffusion in Si remain unclear. Here we report a combined experimental and theoretical study of the lithi...
متن کاملGraphene oxide assisted spontaneous growth of V2O5 nanowires at room temperature.
Graphene-decorated single crystalline V2O5 nanowires (G-VONs) have been synthesized by mixing graphene oxide (GO) and V2O5 suspensions at room temperature. In this process, V2O5 nanowires (VONs) are formed spontaneously from commercial V2O5 particles with the aid of GO. The as-formed one dimensional G-VONs were characterized by using a X-ray diffractometer, a X-ray photoelectron spectrometer, a...
متن کامل